Heat treatment and mechanical properties of low-carbon steel with dual-phase microstructure
نویسنده
چکیده
Purpose: The aim of the paper is to design heat treatment conditions of dual-phase steel and to determine their influence on the structure and mechanical properties of steel. Design/methodology/approach: The heat treatment of the C-Mn steel in order to obtain a dual-phase ferritic – martensitic structure of desirable phase fractions was realized. To investigate the influence of heat treatment parameters on the structure light and transmission electron microscopy methods were used. Mechanical properties were determined by means of tensile test. A strain hardening exponent as a function of true strain was evaluated, too. Findings: It was found that an initial structure influences essentially the morphology of martensite in an obtained dual-phase structure. It can occur as a network, fine fibres or islands in a ferritic matrix of high dislocation density in the vicinity of diffusionless transformation products of austenite. The best combination of strength and ductile properties has a steel with the martensite in a form of fine fibres. Research limitations/implications: Investigations concerning using the thermomechanical treatment to obtain a ferritic – martensitic structure of steel are required. Practical implications: The established heat treatment conditions can be useful for manufacturing dualphase structure sheets characterized by high strength and ductile properties as well as a good suitability for metalforming operations. Originality/value: The relationship between the initial structure and martensite morphology in dual-phase steels was specified.
منابع مشابه
Enhancement of mechanical properties of low carbon steel based on heat treatment and thermo-mechanical processing routes
Thermal treatments and thermo-mechanical processing routes were applied on a conventional structural steel (st37 steel: 0.12C-1.11Mn-0.16Si) for improvement of tensile properties and enhancement of work-hardening behavior. Full annealing resulted in a sheet with coarse ferrite grains and pearlite colonies arranged alternatively in distinct bands, which showed high ductility, low strength, and t...
متن کاملThe Effect of Ferrite Grain Size on the Fatigue Behavior of Ferrite-martensite Dual-phase Steels
The effect of ferrite grain size on the fatigue and tensile properties of dual phase steels with a 0.25 volume fraction of martensite (Vm) under different heat treatments was investigated. The heat treatments were homogenized at 1200 oC along with several subsequent normalizations at 910 oC, resulting in different microstructures and mechanical properties. After heat treatment, the obtained ste...
متن کاملGrain Refinement of Dual Phase Steel via Tempering of Cold-Rolled Martensite
A microstructure consisting of ultrafine grained (UFG) ferrite with average grain size of ~ 0.7 µm and dispersed nano-sized carbides was produced by cold-rolling and tempering of the martensite starting microstructure in a low carbon steel. Subsequently, fine grained dual phase (DP) steel consisting of equiaxed ferrite grains with average size of ~ 5 µm and martensite islands with average size ...
متن کاملImprovement of Mechanical Properties and Work-Hardening Behavior of Intercritically Annealed Dual Phase Steel
The effect of the initial microstructure and intercritical annealing on mechanical properties and work-hardening response of a high-formability low carbon steel were studied. The work-hardening analysis was based on the modified Crussard–Jaoul method. The ferritic-pearlitic sheets showed low strength and high total elongation with the appearance of the yield point phenomenon. The occurrence of ...
متن کاملProcessing of Fine-Grained DP300/600 Dual Phase Steel from St12 Structural Steel by the Thermo-Mechanical Processing of Cold Rolling and Intercritical Annealing
The effect of microstructural refinement and intercritical annealing on the mechanical properties and work-hardening response of a low carbon St12 steel was studied. It was revealed that intercritical annealing of the ferritic-pearlitic sheet results in the formation of a coarse-grained DP microstructure with discrete martensite islands normally formed in place of pearlitic colonies, which resu...
متن کامل